Energy Live Expo

Energy Live News

Energy Live Expo is taking place on October 31st. As always it will look at all the major energy issues of our time in particular the disruption taking place in the energy sector with new technologies, storage and of course policy changes as we enter our transition period of Brexit.

Open Energi will be speaking in the Innovation Hub, sharing our views on the future of energy tech and the opportunities for businesses to cut costs, create revenue and reduce carbon through energy optimisation and demand flexibility.

Date: 31st October 2018

Location: QEII Centre, Westminster, London

Speaker: David Hill, Commercial Director

Further information is available from the event website.

Share Your Energy Conference – 14.11.18

Share Your Energy

Share Your Energy is bringing together the most influential innovators of modern energy. Open Energi’s Head of Markets and Policy Sebastian Blake will join other leading energy tech companies to discuss the latest in flexibility, block chain, artificial intelligence and peer-to-peer energy markets.

Date: 14th November 2018

Location: Prague, Czechoslovakia

Speaker: Sebastian Blake, Head of Markets & Policy

Further information is available from the event website.

Utility Week: Anglian Water partners for solar and energy storage project

Anglian Water has partnered with redT and Open Energi to have energy storage facilities installed alongside solar panels at one of its water treatment works.

The water company has purchased a 60kW/300kWh redT energy storage machine to install alongside a 450kWp solar PV system. This will enable it to store excess solar generated during the day and use it at other times, to reduce the site’s reliance on the grid.

As the largest power consumer in the East of England, reducing reliance on “volatile grid electricity” will help optimise a £77 million energy bill, which is one of the company’s “most significant” operational costs.

Read the full article.

edie: Anglian Water to boost onsite generation with AI-powered energy storage technology

Water utility Anglian Water is set to install an energy storage machine controlled by Artificial Intelligence (AI) technology at one of its water treatment facilities, in a move it claims will increase the site’s solar generation by 80%.

The 60kW/300kWh storage device, designed by energy storage firm redT, will be set up at the company’s ‘pathfinder’ site in Norfolk to bolster the performance of its existing photovoltaic (PV) array from 248kWp to 450kWp.

The machine, which can store enough energy to power the facility for at least five hours, will enable Anglian Water to store surplus power generated by the array for use within its own operations. Meanwhile, it will use AI software to provide real-time balancing and energy flexibility services. The machine is expected to have a lifespan of 25 years.

Called Dynamic Demand 2.0 and designed by Open Energi, the AI software will optimise the site’s energy consumption and stack multiple demand-side value streams, enabling Anglian Water to take advantage of wholesale energy price arbitrage. In total, the installation is expected to halve the site’s electricity bills by 2050.

Read the full article.

The Energyst: Anglian Water takes 300kWh of RedT’s flow storage, plans 30MW of solar

Anglian Water is to buy flow storage units from RedT to co-locate with solar PV at a treatment works. The water firm aims to work out the potential of longer-duration storage in maximising use of solar power.

The deal is for four of RedT’s flow machines, totalling 60kW/300kWh. These will sit alongside 450kW of PV at a ‘pathfinder’ site in Norfolk.

While the main benefit of these kind of installations is to reduce power bills by being able to store and use solar instead of drawing from the grid at peak times, the technology also enables upside revenues from grid services, including frequency response, as well as arbitrage.

The firms will work with aggregator Open Energi to optimise consumption and stack revenues.

Read the full article here.

Current News: Energy retail 2.0 – How and why ‘energy as a service’ is changing the game

Current News

The energy transition that is underway in the UK cannot be denied; the gigawatts of energy resources connected below the transmission system have already fundamentally changed how energy is produced and distributed.

Renewables, energy storage, interconnectors and demand side response have all contributed to this transition, with the most obvious effect seen in the shift towards neutral but active market facilitators by distribution network operators (DNOs). While no one can deny the changes to how energy is produced and sent to homes and businesses, the effect on how consumers pay for this is less established and therefore less discussed.

Read the full article here.

Global Water Intelligence: Utilities look inside and out to cut energy bills with artificial intelligence

In the face of high energy bills, utilities are turning to artificial intelligence to optimise energy consumption. Approaches vary greatly, with utilities incorporating external products or developing software internally.

Two utilities are demonstrating how artificial intelligence (AI) can optimise energy use in water and wastewater treatment plants. Each has taken a different approach. Melbourne Water, an Australian utility, chose to develop the project internally, whereas United Utilities, operating in the northwest of England, has opted to integrate the platform offering of energy management firm Open Energi.

Read the full article here.

Future of Utilities: Smart Energy 2018 – 20/21.11.18

Future of Utilities: Smart Energy is set to bring together 300+ attendees for two days of collaboration discussing energy storage, supply and smart grid developments.

Featuring technology-driven content about how to make energy retail smarter, and systems more flexible, Smart Energy will showcase the experiences of a wider range of energy companies than ever before. 

Open Energi’s Commercial Director David Hill will join a panel session to explore the business case for storage and different approaches from across the value chain.

Date: 20th-21st November 2018

Panel: 14.35, 20th November

Location: The Tower Hotel, Guoman – London

Speaker: David Hill, Commercial Director

Further information is available from the event website.

How greater flexibility can help UK deliver 50% renewables by 2030

electricity pylons

The National Infrastructure Commission (NIC) recently published its first National Infrastructure Assessment (NIA), setting out a strategy for the UK’s economic infrastructure from 2020 to 2050. A key focus is decarbonising the UK’s energy supply and the report recommends 50% of generation is supplied by renewable power by 2030, with the UK’s electricity supply almost entirely zero-carbon – thanks to nuclear and renewables – by 2050. But how can we integrate this level of renewables cost-effectively, and what do we do when the sun doesn’t shine, and the wind doesn’t blow? Wendel Hortop, Commercial Analyst at Open Energi, explores the role of flexibility in enabling the UK’s transition to a zero-carbon energy system.

What would such high levels of renewables mean for the energy system?

The UK is on track to power 50% of our electricity supply with renewable generation by 2030 but this level of renewables creates some very specific challenges. Solar and wind, which would form most of new renewable capacity, are highly inflexible – energy is only generated when the sun is shining, or wind is blowing. Despite increasingly accurate forecasting, this inflexibility introduces short-term (balancing electricity supply and demand within a given half-hour) and long-term (what to do when wind and/or solar output is low for hours or days at a time) challenges, and reduces the level of inertia on the grid, resulting in much quicker changes in system frequency – which must be managed to ensure power keeps flowing.

Flexibility can help to address these impacts cost-effectively – reducing total system spending by between £1-7bn per year – and enable the UK to integrate renewable generation at the scale required by the NIC assessment.

Flexibility can deliver significant cost reductions in in a high renewable system

Source: Open Energi
Source: Aurora Energy Research

 What role does flexibility have to play?

The majority of system balancing occurs through the energy market in response to energy prices visible over different timescales, of which the last resort is the imbalance price. Energy generators and suppliers forecast their half-hourly energy usage and provide this to National Grid, who then take action to correct any differences between forecast and actual energy usage. Anyone out of balance in a way which harms the system pays a penalty, whilst the opposite is also true – putting yourself in imbalance to benefit the system gets rewarded. The imbalance price (or System Price) is not known until afterwards so predicting and reacting to it allows energy users to help the grid and be rewarded; increasingly trading teams at big suppliers are looking to their customers to help manage this.

Open Energi are already responding to the imbalance price by flexing loads through signals from suppliers, such as Ørsted’s Renewable Balancing Reserve. Increased renewable generation on the grid will increase the likelihood of system imbalances, and the incentive to respond.

Flexible loads can respond in real-time to predicted system prices

Flexible loads can respond in real-time
Source: Open Energi

The wholesale market doesn’t balance all supply and demand so National Grid look to the suite of services they procure to do the rest. For example, frequency response services fine tune the system balance and provide a ‘first line of defence’ after large generation outages.

Demand flexibility is already an established tool in helping to balance frequency on the grid via the Firm Frequency Response market. Inertia levels falling means faster frequency response is needed. Lithium-ion batteries are perfect for delivering this, whilst some forms of demand flexibility can also respond at the required speed. National Grid is developing a Faster Acting Frequency Response product which will allow loads capable of responding quickly enough to participate and will procure a mix of assets capable of tracking frequency (such as batteries) and those capable of delivering large shifts in demand almost instantaneously (such as large industrial processes).

Longer term shortfalls in generation introduce a new challenge for flexibility

The more significant challenge is in longer periods of low wind and solar generation. Increased interconnection with Europe will help but demand flexibility can again play a key role.

Frequency response has tended to focus on energy flexibility within a half-hour period, however many processes have inherent energy storage of hours or even days. Water pumps, heating and CHPs are all assets which can shift demand over long periods. The signals to do so come from the market – low renewable generation leads to increased wholesale energy prices, and vice versa. As wholesale energy prices can be known a day ahead, a load can be optimised in advance to increase consumption when prices are lowest, and reduce consumption when prices are high.

Many flexible processes have hours or even days of energy storage
 

Many flexible loads have hours or even days of storage
Source: Open Energi

Advances in storage technology will also assist with this longer duration requirement for flexibility. Technologies such as vanadium flow batteries can provide over 4 hours of energy storage and can help balance sustained periods of low or high renewable generation as well as providing short-term frequency response and price arbitrage.

Aggregation of assets such as these, diverse in both location and technology, will help to tackle longer periods by spreading the requirement for flexibility. Digitalised platforms that use artificial intelligence (AI), statistics and probability can schedule and manage asset behaviour to deliver the optimal amount of flexible capacity.

As we look to 2030, increased adoption of electric vehicles (EVs) will also come into play, either through smart charging or vehicle-to-grid (V2G) charging. In their latest Future Energy Scenarios report National Grid predict we could have over 10 million electric vehicles in 2030, and over 35 million in 2040 – a huge number of flexible, distributed assets.

Smart charging will allow EV charging to be modulated or staggered to avoid surges in consumption or shifted to times of day when demand is low, reducing the infrastructure required to support them. Aurora Energy Research estimate that smart charging can reduce the level of generating capacity required in 2050 by up to 22GW in a high renewables system. Meanwhile V2G charging introduces possibilities such as taking households off-grid during peak periods – Open Energi are part of the PowerLoop consortium exploring this and other potential V2G applications.

Smart charging significantly reduces the need for flexible generating capacity

Source: Aurora Energy Research
Source: Aurora Energy Research

Decarbonisation of heat will introduce new sources of flexibility

One common process with very high levels of inherent storage is heating; however the UK’s reliance on gas means potential flexibility which could be offered to the electricity system is currently limited. Looking forward the decarbonisation of heat therefore offers long-term opportunities, whether this comes through electrification or a transition to hydrogen and district heating.

Switching to heat pumps would introduce a large but flexible energy load into the system with significant storage potential. Coupled with smart meters and other advances in technology this could lead to a highly distributed source of flexibility for the grid, just as with the shift to electric vehicles.

Hydrogen powered heating – produced via electrolysis – is an energy-intensive but flexible process, which alongside district heating networks would likely lead to many more CHPs – which offer short and long term flexible capacity.

Technology will play an important role in delivering this flexibility

The NIA shows that flexibility has a key role to play in delivering or surpassing our carbon targets. As renewable generation increases significantly so will the need for flexibility. We already have many of the solutions we need – the real challenge is rolling these out at the required scale and speed.

This is where AI and cloud computing can come into their own. Aggregation of larger and larger portfolios of diverse loads will require the behaviour of each of these individual loads to be optimised and controlled in real-time in response to the requirements of the system. Meanwhile the move to smaller, distributed loads, including those on a domestic scale such as electric vehicles, will rely heavily on cloud computing with dispatch instructions delivered over the internet and loads communicating their behaviour with the platform and each other.

Ultimately these solutions can give rise to an autonomous, self-balancing grid which operates incredibly cheaply. Open Energi are leading this transition, connecting, aggregating and optimising distributed energy resources in real-time, to create a more sustainable energy future.