Daring to imagine an energy future that’s unlike our past

Future Energy System

Two years ago, when we walked into a pub in Old Street to chat with Forum for the Future about creating a virtual power station, we had no idea we’d end up convening a project to challenge the fundamentals of how our energy system works – called the Living Grid.

Our early conversations were all about reducing our reliance on fossil fuelled generators, and proving the potential of demand-side management to revolutionise our energy grid.  But it turns out, when you mix inspiring conversations with businesses, universities, government bodies, local authorities, community groups, start-up technology providers, industry associations and everyone in between with a standing-room-only presentation from Michael Pawlyn, you end up with an initiative that questions every aspect of how our energy system is designed.

Why limit the conversation to the role of sophisticated, demand-side technologies. If our goal is an energy system powered by renewable energy rather than fossil fuels, we must look at the capabilities, interactions and design of every aspect of the system and question whether it has to be this way, or whether there is a better, alternative approach – and we must unleash our imaginations to do it.  The Living Grid has become a community of people and organisations who are deliberately challenging the beliefs we hold about our energy future, to open up solutions to us that are simply not possible using the same thinking that created our fossil-fuel powered grid.

“The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, self-cleansing.  Not so with technology.”  E.F. Schumacher

The Living Grid is provoking us to look beyond carbon reductions at the mismatch between our human energy system and the wider, living energy system that’s evolved here over the last 3.8 billion years of life.   Rather than cycle solar energy through a closed-loop, cooperative system – as other life forms do around here – our linear, centralised grid releases energy into the atmosphere by burning fossil fuels, wasting it rather than recapturing it. ‘What it would take to make our alien energy system part and parcel of nature again? 

As founding technology partner, Open Energi is proud to have helped bring the Living Grid into existence with our customers Aggregate Industries, Sainsbury’s, Tarmac and United Utilities.  As the Living Grid grows, we’re pleased that other organisations who share its vision, such as Smartest Energy, are getting involved to usher-in the next stage of development. This next next phase is starting with a global, online conversation to reimagine our legacy grid.  Are you curious about how nature would design our energy system?  Join the debate here.

The Living Grid is a project convened by Forum for the Future.  To find out more about the Living Grid and how you could get involved please contact: g.adams@forumforthefuture.org or h.hauf@forumforthefuture.org

 

How Artificial Intelligence is shaping the future of energy

Artificial Intelligence can unlock demand side flexibility for end users

Across the globe, energy systems are changing, creating unprecedented challenges for the organisations tasked with ensuring the lights stay on. In the UK, large fossil fuelled power stations are being replaced by increasing levels of widely distributed wind and solar generation. This renewable power is clean and free at the point of use but it cannot always be relied upon. To date National Grid has managed this intermittency by keeping polluting power stations online to make up the difference but Artificial Intelligence offers an alternative approach.

What’s needed is a smart grid which can integrate renewable energy efficiently at scale without having to keep polluting power stations online to manage intermittency. This requires energy storage to act as a buffer, reducing demand when supply is too low or increasing it when it is too high. Most people associate energy storage with batteries, but the cheapest and cleanest type of energy storage comes from flexibility in our demand for energy.

This demand-side flexibility takes advantage of thermal or pumped energy stored in everyday equipment and processes, from an office air-con unit, supermarket fridge or industrial furnace through to water pumped and stored in a local reservoir. The electricity consumption patterns of these types of devices are not necessarily time-critical. Provided they operate within certain parameters – such as room temperature or water levels – they can be flexible about when they use energy.

This means that when electricity demand outstrips supply, instead of ramping up a fossil fuelled power station, certain types of equipment can defer their electricity use temporarily. And if the wind blows and too much electricity is being supplied instead of paying wind farms to turn off we can ask equipment to use more now instead of later.

Making our demand for electricity “intelligent” in this way means we can provide vital capacity when and where it is most needed and pave the way for a cleaner, more affordable, and more secure energy system. The key lies in unlocking and using demand-side flexibility so that consumers are a) not impacted and b) appropriately rewarded.

At Open Energi, we’ve been exploring how artificial intelligence and machine learning techniques can be leveraged to orchestrate massive amounts of demand-side flexibility – from industrial equipment, co-generation and battery storage systems – towards the one goal of creating a smarter grid.

We have spent the last 6 years working with some of the UK’s leading companies to manage their flexible demand in real-time and help balance electricity supply and demand UK-wide.  In this time, we have connected to over 3,500 assets at over 350 sites, operating invisibly deep with business processes, to enable equipment to switch on and off in response to fluctuations in supply and demand.

Already, we are well on the way to realising a smarter grid, but to unlock the full potential of demand-side flexibility, we need to adopt a portfolio level approach. Artifical intelligence and machine learning techniques are making this possible, enabling us to look across multiple assets on a customer site, and given all the operational parameters in place, make intelligent, real-time decisions to maximise their total flexibility and deliver the greatest value at any given moment in time.

For example, a supermarket may have solar panels on its roof and a battery installed on site, as well as flexibility inherent in its air-con and refrigeration systems. Using artificial intelligence and machine learning means we can find creative ways to reschedule the power consumption of many assets in synchrony, helping National Grid to balance the system while minimising the cost of consuming that power for energy users.

Lack of data is often an obstacle to progress but we collect between 10,000 and 25,000 messages per second relating to 30 different data points and perform tens of millions of switches per year. This data is forming the basis of a model which can look at a sequence of actions leading to the rescheduling of power consumption and make grid-scale predictions saying “this is what it would cost to take these actions”. The bleeding edge in deep reinforcement learning shows how, even with very large scale problems like this one, there are optimisation techniques we can use to minimise this cost beyond what traditional models would offer.

Artificial Intelligence model learning to control the electricity consumption of a portfolio of assets

Graph of AI model

More rapid progress could be made across the industry if energy companies made more anonymised half-hourly power data available. It would enable companies working on smart grid technologies to validate these ideas quickly and cheaply. In the same vein, it would be a major breakthrough for balancing electricity supply and demand if energy companies made available APIs for reporting and accessing flexibility; it would allow companies like Open Energi to unlock enormous amounts of demand-side flexibility and put it to good use balancing not just the grid but also helping to optimise the market positions of those same energy companies.

In the UK alone, we estimate there is 6 gigawatts of demand-side flexibility which can be shifted during the evening peak without affecting end users. Put into context, this is equivalent to roughly 10% of peak winter demand and larger than the expected output of the planned Hinkley Point C – the UK’s first new nuclear power station in generations.  Artificial Intelligence can help us to unlock this demand-side flexibility and build an electricity system fit for the future; one which cuts consumer bills, integrates renewable energy efficiently, and secures our energy supplies for generations to come.

Michael Bironneau is Technical Director at Open Energi. He graduated from Loughborough University in 2014 with a PhD in Mathematics and has been writing software since the age of 10.

How can machine learning create a smarter grid?

Dynamic Demand 2.0

Across the globe, energy systems are changing and creating unprecedented challenges for the organisations tasked with ensuring the lights stay on. In the UK, National Grid is facing shrinking margins, looming capacity shortages and unpredictable peaks and troughs in energy supply caused by increasing levels of renewable penetration.

At the recent Reinventing Energy Summit, Michael Bironneau, Head of Technology Development at Open Energi, explored how the same machine learning techniques that have let machines defeat chess and Go masters, can also be leveraged to orchestrate massive amounts of flexible demand-side capacity – from industrial equipment, co-generation and battery storage systems – towards the one goal of creating a smarter grid; one that is cleaner, cheaper, more secure and more efficient.

For World Cities Day 2016, Michael talked to Nikita Johnson of Re:work about utilising data science in energy, creating a smarter grid, political challenges, and more.
What are the main transformative technologies that will help create a smarter grid?
A smarter grid is one where we can integrate renewable energy efficiently without having to keep polluting power stations online to manage intermittency. This requires energy storage to act as a buffer, reducing demand when supply is too low or increasing it when it is too high.

The cheapest and cleanest type of energy storage comes from flexibility in our demand for energy. Open Energi’s Dynamic Demand platform unlocks small amounts of stored energy from commercial and industrial processes – such as refrigerators, bitumen tanks and water pumps – and aggregates and optimises it second by second, creating a virtual battery.

How can machine learning be applied to help balance the grid?
The most transformative application of machine learning for grid balancing comes from unlocking and utilising flexibility in demand-side power consumption. Such algorithms can find creative ways to reschedule the power consumption of many demand and generation assets in synchrony to keep the grid in balance while helping to minimise the cost of consuming that power for energy users.

With sufficient data, a ML model can look at a sequence of actions leading to the rescheduling of power consumption and make grid-scale predictions saying “this is what it would cost to take these actions”. The bleeding edge in deep reinforcement learning shows how, even with very large scale problems like this one, there are optimisation techniques we can use to minimise this cost beyond what traditional models would offer.

What are the regulatory and political challenges to achieving a national smart grid in the UK?
Whatever your role in the vibrant menu of demand side innovations that are offered across Europe, a shared goal for serving consumers is advocating for the framework of flexibility adequacy at the energy system level. This opens so many possibilities – to facilitate Electric Vehicles, mitigate renewable intermittency, replace aging coal infrastructure, and realise a smart grid.

The key is market access. Currently, the UK market favours existing power generators to a disproportionate extent. To fully realise the potential of demand-side flexibility to help balance the grid, save energy and offer lower costs for consumers, we need a level playing field. Without it, there is a very real risk that we will lead ourselves into multi-decade contracts for power plants, paying for a system which is already over capacity and which has no incentive to get any smarter.

How can energy companies work with engineers and data scientists to achieve a more efficient energy system?
One obstacle that prevents many ideas from taking off is the lack of data to support them. If energy companies made more anonymised half-hourly power data available, data scientists and engineers working on new smart grid technologies would be able to validate these ideas quickly and cheaply. In the same vein, it would be a major breakthrough for grid balancing if energy companies made available APIs for reporting and accessing flexibility; it would allow companies like us to unlock enormous amounts of demand-side capacity and put them to good use balancing not just the grid but also helping to optimise the market positions of those same energy companies.

This post originally appeared on Re:work’s blog on the 31st October 2016.