Future proofing London: Regeneration in the age of IOT

Storage London Skyline of Gherkin

July 2015: David Hill, Business Development Director, Open Energi

Planning for the redevelopment of London’s Old Oak Common is now in full swing with the appointment of the Old Oak and Park Royal Development Corporation (OPDC) board. What lessons can the team behind the project learn to ensure the scheme is futureproofed and can meet the needs of Londoners for generations to come?

In February 2015, London’s population reached a new high of 8.6 million people, exceeding the previous record set back in 1939. The city’s population is set to continue to expand, with current estimates predicting it will reach 11 million by 2050.

There is an urgent need for new housing in the UK capital to help manage this growth. The Greater London Authority (GLA) has outlined ambitious investment plans to improve the capital’s infrastructure which could require £1.3tn of spending from now until 2050, most of which needs to go on housing and transport.  As part of one of the largest regeneration schemes in London for decades, plans are now fully afoot to transform brownfield land in Old Oak Common and Park Royal into a sustainable New Town close to the heart of the city.

At present, the Mayor of London’s office suggests that development in north-west London will create up to 24,000 homes and more than 55,000 jobs. According to the GLA, the scheme will be an exemplar in accessible, high quality and ‘smart’ regeneration which, over the next 20 years, will strengthen London’s role as a global city.

Within this wider regeneration project in the currently underutilised region of west London, plans are also being drawn up by the London Sustainable Development Commission (LSDC) to create a world-leading clean tech hub. LSDC, which advises the Mayor on the city’s low carbon economy, hopes the hub will attract forward-thinking start-ups and large green companies from across Europe, especially once major planned train lines open, including Crossrail and HS2.

Accordingly, the GLA’s Draft Old Oak and Park Royal Opportunity Area Planning Framework (OAPF), which was produced with contributions from Transport for London (TfL) and the London Boroughs of Brent, Ealing and Hammersmith & Fulham sets out an ambitious vision to ensure that the Old Oak and Park Royal area is an exemplar of low carbon development.

The GLA has already committed to achieving the highest standards of energy efficiency and low carbon technology and, to this end, has pledged to produce an Energy Strategy and subsequent Energy Masterplan for the area.

The Mayor has set a target for London to self-generate 25% of all electricity consumption by 2025 to improve system resilience and reduce the cost of transmission. Local energy in London includes solar power and heating networks supplied by plants which are close to where energy is used and which generate heat and power at the same time.

The problem with these approaches is that they require space, which is already at a premium in London. Added to this, not only is gas for combined heat and power (CHP) tied in to volatile global energy prices, but it is also carbon emitting – a particularly problematic scenario for a city which is already struggling with an air pollution crisis. The city is in urgent need of a high-tech energy solution and, as this swathe of London begins its transformation, it is essential that the GLA fully embraces the huge opportunity for system change to ensure the scheme is futureproofed and can meet the needs of Londoners for generations to come.

Cutting edge software and an Internet of Things approach to energy-consuming assets are enabling advanced forms of demand response technology to be rolled out across a range of equipment – including heaters, pumps, chillers, refrigerators and air conditioning units – turning them into smart, automated and autonomous devices that can react instantly to changes in electricity supply and demand across the network to free up capacity, while also delivering new revenues for consumers in return for this improved grid resilience.

The UK has historically tried to deal with capacity issues by increasing supply rather than addressing the root of the problem but, to illustrate the potential scale of success, we should look to the US, where the use of demand response technology has already shaved off ten per cent of the country’s peak energy demand.

In the UK, National Grid urgently needs more flexibility from the demand side to support intermittent renewable use and meet rising energy demand, and has already announced targets to increase demand side balancing capacity from 700MW to 3GW by 2020. In London alone, there is around 250MW (equivalent to five per cent of peak demand) of flexibility in our energy system that could be easily utilised using demand response.  This would effectively remove one whole peaking power station from the grid. Of the £1.3 trillion OPDC infrastructure plan, £150 billion of spending is slated for energy. If we apply the five per cent flexibility logic above, this equates to instant savings of £7.5 billion.

Demand flexibility resides in a range of city areas. For example, eighteen per cent of London‘s energy consumption comes from commercial buildings, of which at least twenty per cent is flexible.  Two per cent of power consumption comes from the water sector, of which eighty per cent is flexible.  In aggregate, this flexibility can provide London with a ‘Virtual Power Plant’, meeting the needs of the growing population without the need for any new infrastructure.

The business case for demand response already exists without any need for intervention or support – and is already being applied effectively by organisations from National Grid to energy intensive corporates, such as Sainsbury’s. From a sustainability perspective, too, demand response makes sense in enabling businesses to move beyond their own footprint and supply chains to help deliver system-wide change.

As development progresses, the Old Oak Common and Park Royal project is a prime candidate for smart grids and demand side response at both building (new and retrofitting existing) and aggregate levels to optimise capacity investment, reduce energy demand, balance local energy supply and demand, including peak energy across the site, and reduce the need for network reinforcement.

HyperCat City’s work in promoting IOT standards, and then involving these in planning and design phases already provide OPDC with some of the crucial tools needed to deliver real cost reduction benefits.

As London expands there is a huge opportunity to capitalise on power demand flexibility to drive major cost and carbon efficiency benefits for the city. To achieve that we must first create a comprehensive map of where flexibility currently resides in the system which will show the level of generation actually required to power new build projects, such as Old Oak Common and Park Royal.  Those new build projects present the opportunity to map demand flexibility at a highly granular level, i.e. by building, which will creates a true image of where capacity lies, as well as building in resilience from the ground up.